

ADQ36-PXIe Datasheet

The ADQ36 is a high-end 12-bit quad channel flexible data acquisition board optimized for use in high channel-count scientific applications. The ADQ36 features:

- 4 / 2 analog input channels
- 2.5 / 5 GSPS per channel
- 7 GBytes/s sustained data transfer rate
- Two external triggers
- General Purpose Input/Output (GPIO)

Ordering information

- ADQ36 digitizer including firmware FWDAQ, order code ADQ36.
- Warranty extension to 5 years for ADQ36, order code ADQ36-W5Y.¹²
- Firmware development kit for FWDAQ, order code ADQ36-DEVDAQ.

¹ Included warranty is 3 years from the date the product is shipped by Teledyne SP Devices. The option extends the warranty to 5 years from the date the product is shipped by Teledyne SP Devices.

² Warranty extension must be ordered before included 3 years warranty is expired.

1 ADQ36 INTRODUCTION

1.1 Features

- 4 / 2 analog input channels, software-selectable
- 2.5 / 5 GSPS sampling rate per channel
- 12 bits vertical resolution
- DC-coupled with 2.5 GHz analog bandwidth
- Programmable DC-offset
- Internal and external clock reference
- Internal and external clock source
- Clock reference output
- Internal and external triggers
- 8 GBytes data memory
- 7 GBytes/s sustained data streaming to CPU and GPU
- Data interface PXIe Gen3 x8

1.2 Applications

ADQ36 is intended to be used primarily in high channel-count systems.

- LIDAR
- Beam Position Monitor
- High energy physics

1.3 Advantages

- A compact high-performance digitizer that optimize the system solution
- Real-time processing and high data throughput
- Teledyne SP Devices' design services are available for fast integration to reduce time-tomarket

1.4 System design optimization; open FPGA and streaming to CPU and GPU

High-performance data acquisition systems require high-speed real-time analysis. ADQ36 offers a variety of options for efficient system design:

Streaming to GPU

ADQ36 supports up to 7 GByte/s peer-to-peer streaming and streaming via pinned buffer to GPU. A GPU offers a powerful platform for implementing application-specific signal processing algorithms.

Streaming to CPU

ADQ36 supports up to 7 GByte/s to host PC. Implementing the application-specific algorithms in the CPU results in an efficient system.

Open FPGA for real-time processing

ADQ36 offers an open FPGA for implementation of the application-specific computations in the FPGA. This gives the most compact system design.

2 TECHNICAL DATA

Technical parameters are valid for ADQ36 operating with firmware FWDAQ. All parameters are typical unless otherwise noted.

Table 1 Analog input (front panel label A, B, C and D)

Parameter	Condition	Unit	Min	Typical	Max
Basic parameters					
Number of channels ³	4-channel mode			4	
Sampling rate per channel	4-channel mode	Gsample/s		2.5	
Number of channels	2-channel mode			2	
Sampling rate	2-channel mode	Gsample/s		5	
Bandwidth (-3dB)		GHz		2.5	
Input range		Vpp		0.5	
Input impedance		Ω		50	
Coupling				DC	
Programmable DC-offset					
DC-offset range		V	-0.25		+0.25
AC performance, 4-channel m	ode, 2.5 GSPS				
Cross talk	< 800 MHz	dBFS		-70	
Noise power density	0 to 1.25 GHz	dBFS/√Hz		-148	
SNR	260 MHz, -1dBFS	dBc		54	
SFDR	260 MHz, -1dBFS	dBc		65	
ENOB relative full scale	10 MHz, -1dBFS	bits		8.8	
ENOB relative full scale	260 MHz, -1dBFS	bits		8.8	
ENOB relative full scale	810 MHz, -1dBFS	bits		8.8	
ENOB relative full scale,	260 MHz, -1dBFS	bits		9.0	
using FIR filter ⁴					
AC performance, 2-channel m	node, 5 GSPS				
Cross talk	< 800 MHz	dBFS		-80	
Noise power density	0 to 2.5 GHz	dBFS/√Hz		-150	
SNR	260 MHz, -1dBFS	dBc		53	
SFDR	260 MHz, -1dBFS	dBc		60	
ENOB relative full scale	10 MHz, -1dBFS	bits		8.7	
ENOB relative full scale	260 MHz, -1dBFS	bits		8.6	
ENOB relative full scale	1625MHz,-1dBFS	bits		8.1	
ENOB relative full scale,	260 MHz, -1dBFS	bits		9.0	
using FIR filter ⁴					

³ The number of channels is configured by changing firmware of the FPGA. Changing firmware requires a re-boot of the PC. Both 4-channel and 2-channel modes are included in the delivery.

⁴ Programmable FIR filter enabled. Coefficients [57,92,-279,21,704,-720,-1163,4127,10784]/2¹⁴

Table 2 Clock generator

Parameter	Condition	Unit	Min	Typical	Max
Internal clock reference					
Frequency		MHz		10	
Accuracy		ppm		±3 ±1/year	
Internal sampling clock gene	erator ⁵		-		
Frequency range 1	4-channel mode	MHz	2440	2500	2500
Frequency range 2	4-channel mode	MHz	1473		1627
Frequency range 1	2-channel mode	MHz	4880	5000	5000
Frequency range 2	2-channel mode	MHz	2946		3254
External clock reference inp	ut (front panel CLK o	connector) ⁶	'		
Frequency		MHz	1	10	500
Frequency ⁷	Jitter cleaner	MHz	10	10	500
	enabled		-10 ppm		+10 ppm
Frequency	Delay line used	MHz		10	100
Delay line tuning range		ps		500	
Signal level	Recommended	Vpp	0.5		3.3
Input impedance	AC	Ω		50	
Input impedance	DC	Ω		10k	
Input impedance (high) 8	AC	Ω		200	
Clock reference output (from	it panel CLK connect	or) ⁹			
Frequency		MHz		10	
Signal level	Into 50-Ω load	Vpp		1.2	
Output impedance	AC	Ω		50	
Output impedance	DC	Ω		10k	
External direct sampling clo	ck input (front panel	CLK connec	tor) ¹⁰		
Frequency ¹¹		MHz	1000	2500	2500
Signal level	Recommended	Vpp	0.5		3.3
Impedance	AC	Ω		50	
Impedance	DC	Ω		10k	

⁵ The internal clock generator can generate frequencies in two different ranges.

⁶ Use clock reference from an external source to synchronize the ADQ36 to the external source.

⁷ The jitter cleaner requires the reference frequency to be a multiple of 10 MHz within ± 10ppm.

⁸ Software-selectable high-impedance mode.

⁹ For using the ADQ36 as the master for synchronizing other equipment.

 $^{^{10}}$ Use an external clock. Bypass the internal clock generator. Use typical 2500 MHz for both 2-channel and 4-channel mode.

¹¹ In two-channel mode, the sampling frequency is twice the external clock frequency.

Table 3 Front panel TRIG connector

Parameter	Condition	Unit	Min	Typical	Max
Used as input					
Impedance	DC	Ω		50	
Impedance (high) 12	DC	Ω		500	
Signal level	50-Ω mode	V	-0.5		3.3
Adjustable threshold	50-Ω mode	V	0		2.8
Signal level	High impedance	V	-0.5		5.5
Adjustable threshold	High impedance	V	0		2.3
Pulse repetition frequency		MHz			10
Time resolution 13	As trigger	ps		50	
Update rate ¹³	As GPIO	MHz			156.25
Used as output					
Impedance	DC	Ω		50	
Output level high	Into 50-Ω load	V	1.4		
Output level high ¹⁴	Unterminated	V	3.1		
Output level low	Into 50-Ω load	V			0.1
Pulse repetition frequency 13		MHz			156.25

Table 4 Front panel SYNC connector (SYNC is a trigger signal with limited timing resolution)

Parameter	Condition	Unit	Min	Typical	Max
Used as input					
Impedance	DC	Ω		50	
Impedance (high) 12	DC	Ω		500	
Signal range	50-Ω mode	V	-0.5		3.3
Adjustable threshold	50-Ω mode	V	0		2.8
Signal level	High impedance	V	-0.5		5.5
Adjustable threshold	High impedance	V	0		2.3
Pulse repetition frequency	As trigger	MHz			10
Time resolution 13	As trigger	ns		3.2	
Update rate 13	As GPIO	MHz			156.25
Used as output					
Impedance	DC	Ω		50	
Output level high	Into 50-Ω load	V	1.4		
Output level high	Unterminated	V	3.1		
Output level low	Into 50-Ω load	V			0.1
Pulse repetition frequency 13		MHz			156.25

¹² Software-selectable high-impedance mode

¹³ Timing properties are valid for 2.5 GSPS and 5 GSPS and scale linearly with sampling frequency.

¹⁴ Driving an unterminated 50-ohm line with the output gives good signal integrity and high swing at the far end since the output provides proper source termination

Table 5 Front panel GPIO connector

Parameter	Condition	Unit	Min	Typical	Max
Single-ended GPIO pins					
Number of signals				12	
Input level high		V	2		
Input level low		V			0.8
Output level high	100 uA	V	3.1		
Output level low	100 uA	V			0.1
Output level high	8 mA	V	2.5		
Output level low	8 mA	V			0.6
Update rate per pin		Mbit/s			156.25
Differential LVDS GPIO				'	
Number of data inputs				2	
Number of data / clock				2	
inputs					
Number of data outputs				3	
Update rate per pin		Mbit/s			156.25

Table 6 Environment and mechanical parameters

Parameter	Condition	Unit	Min	Typical	Max
Power and temperature					
Power consumption		W		60	
Power supply		V	10.8	12	13.2
Operating temperature		°C	0		45
Size		·			
Width		slots		2	
Height		mm		3U	
Mechanical standard			PXIe Type 2		
Compliances					
RoHS3				Yes	
CE				Yes	
FCC	Exclusion according to CFR 47, part 15, paragraph 15.103(c)				

Table 7 Data Acquisition

Parameter	Condition	Unit	Min	Typical	Max
Re-arm time		ns			20
Acquisition memory	Shared by all	GiBytes		8	
(Data FIFO)	channels				
Record length		samples	1		2 ³¹
Pre-trigger		samples	0		16 360
Trigger delay	4-channels mode	samples	0		2 ³⁵ -8
Length granularity	4-channels mode	samples	8		
pre-trigger and trigger delay					
Trigger delay	2-channels mode	samples	0		2 ³⁶ -16
Length granularity	2-channels mode	samples	16		
pre-trigger and trigger delay					

Table 8 Data Transfer

Parameter	Unit	Value
Supported PCIe versions		Gen1
		Gen2
		Gen3
Supported number of lanes		1
		4
		8
Sustained data rate to CPU, with headers	GByte/s	5
Sustained data rate to CPU, without headers	GByte/s	7
Sustained data rate to GPU, without headers	GByte/s	7
Sustained data rate peer-to-peer to GPU, without headers	GByte/s	7

Table 9 Software support

Parameter	Value
Operating system ¹⁵	Windows 10
	Linux
GUI	Digitizer Studio
Example code	C, Python
API ¹⁶	C / C++

¹⁵ See the document 15-1494 for a listing of supported distributions.

 $^{^{16}}$ Note that only the C / C++ interface enables maximum data transfer rate.

3 FEATURES FOR DATA FLOW CONTROL, SYNCHRONIZATION AND PROCESSING

The ADQ36 features advanced machinery for flow control, synchronization, and signal processing. The block diagrams are shown in Figure 1 and Figure 2. The features are described in the following tables.

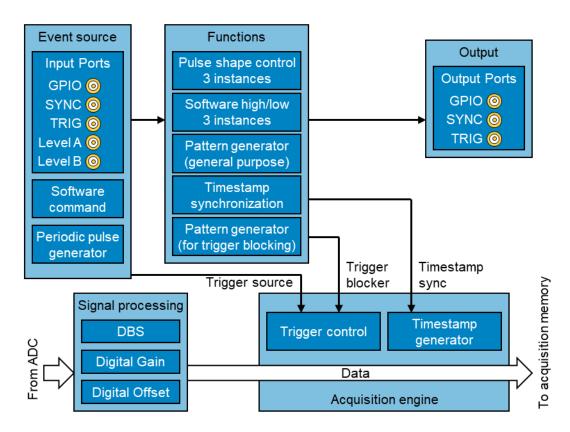


Figure 1 Flow control and synchronization block diagram

Table 10 Digital signal processing blocks

Object type	Available features
Digital Signal Processing	Digital Baseline Stabilizer (DBS)
Included signal processing in the data	Digital gain
path for enhanced signal quality	Digital offset
	Programmable FIR filter

Table 11 Flow control blocks

Object type	Available features
Input ports	Front panel TRIG
Electrical connections to the ADQ36 for	Front panel SYNC
real-time operation (excluding the PCle	Front panel GPIO
data interface). Used as event source.	Front panel CLK (clock reference or clock input only)
	Analog channel A
	Analog channel B
	Analog channel C
	Analog channel D
Event sources	Software command
Signals for real-time control of activities	External TRIG
in the firmware of ADQ36	External SYNC
	External GPIO
	Internal periodic event generator
	Level analog channel A
	Level analog channel B
	Level analog channel C
	Level analog channel D
Functions	Pattern generator for timestamp synchronization
Included operations for real-time control	General purpose pattern generator, 2 instances
of activities in the firmware of ADQ36	Pulse generator, 4 instances
Output ports	Front panel TRIG
Electrical connections to the ADQ36 for	Front panel SYNC
real-time operation (excluding the PXIe	Front panel GPIO
data interface)	Front panel CLK (clock reference output only)

Table 12 Firmware Functions for flow control

Function	Modes / Selections	Event Sources as stimuli
Pattern generator for		Software command
timestamp sync		External TRIG
Control the time of		External SYNC
the ADQ36		Internal periodic event generator
Pulse generator	Rising edge	Software command
Control output pulse	Falling edge	External TRIG
shapes. Three	Pulse length	External SYNC
instances.	Polarity	Internal periodic event generator
Pattern generator for	Once	Software command
trigger blocking	Window	External TRIG
	Gate	External SYNC
	Trigger counter	Internal periodic event generator

Table 13 Firmware functions for acquisition

Function	Modes	Event Sources as stimuli
Trigger		Software command
Start the acquisition of		External TRIG
a data record		External SYNC
		Internal periodic event generator
		Level analog channel A
		Level analog channel B
		Level analog channel C
		Level analog channel D
Data acquisition	Streaming with header	
modes	Streaming without header	
Configurations for		
sending digital data to		
the host PC		

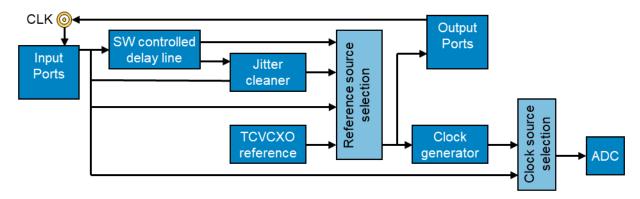


Figure 2 Clock generation block diagram

Table 14 Clock generation

Function	Modes
Clock reference source	Internal
Phase and frequency reference for the	External
clock system	External with jitter cleaner and/or delay-line
Sampling clock sources	Internal clock generator
Actual clock for taking the samples of the	Direct external clock
analog data	
Clock output	Selected clock reference

4 FRONT PANEL CONNECTORS AND LEDS

	CLK	SMA	Clock reference in/out. Direct clock
ADQ36	Α	SMA	Analog channel A
CLK O OYNC TRIG	В	SMA	Analog channel B (used in 2-channel mode)
	С	SMA	Analog channel C
	D	SMA	Analog channel D (used in 2-channel mode)
	STA	Multi-color LED	Status
င္	ATN	LED	PXIe attention
RDY DO	RDY	Green LED	Ready
USR	USR	Blue LED	User / Start-up
TELEDYNE SP DEVICES	SYNC	SMA	External trigger and synchronization
	TRIG	SMA	External trigger
	GPIO	HD-DSUB 44	General purpose input/output

5 PXIE BACKPLANE CONNECTORS

The ADQ36-PXIe requires two slots in the PXIe chassis. The connector in the leftmost slot is only used to supply additional power to the digitizer.

	PCle	Slot 1	Generation 3 by 8 lanes
	Power	Slot 1	12V
	PXIe_DStarA	Slot 1	Star trigger clock (not used)
	PXIe_DStarB	Slot 1	Star trigger to ADQ36
	PXIe_DStarC	Slot 1	Star trigger from ADQ36
	PXIe clk100	Slot 1	Backplane clock reference
	PXIe sync100	Slot 1	Backplane clock reference
	PXI_Trig0	Slot 1	Available for future use
	PXI_Trig1	Slot 1	Available for future use
	GA0-5	Slot 1	Available for future use
	SMB	Slot 1	Available for future use
Slot 1 Slot 2	Power	Slot 2	Additional power 12 V

Figure 3 PXIe backplane connectors.

6 CONFIGURING NUMBER OF CHANNELS

Changing from 4-channel mode to 2-channel mode is done by changing firmware image in the FPGA. Both firmware images are available in a non-volatile memory on the ADQ36 digitizer. The software tool ADQAssist can be used to change which firmware image will be loaded into the FPGA the next time the ADQ36 is reset. Changing firmware requires power cycling of the PC for the PCle bus to enumerate.

The analog input connectors for Channel B and D are used in the 2-channel mode.

7 ABSLOUTE MAXIMUM RATINGS

Table 15 Absolute maximum ratings

Parameter	Condition	Unit	Min	Max
Power supply to GND		[V]	-0.4	14
Temperature operation		[°C]	0	45
Analog in to GND		[V]	-1.75	+1.75
TRIG to GND	50-Ω mode	V	-2	5
SYNC to GND	50-Ω mode	V	-2	5
TRIG to GND	500-Ω mode	V	-2	6
SYNC to GND	500-Ω mode	V	-2	6
CLK REF to GND AC amplitude		[Vpp]		5
CLK REF to GND DC level		[V]	-5	5
GPIO to GND		[V]	-1.5	5

Exposure to conditions exceeding the absolute maximum ratings may reduce lifetime or permanently damage the device. The built-in temperature monitoring unit will protect the digitizer from overheating by temporarily shutting down parts of the device in an overheat situation.

The SMA connectors have an expected lifetime of 500 operations. For frequent connecting and disconnecting of cables, connector savers are recommended.

8 TYPICAL PERFORMANCE

8.1 Frequency response

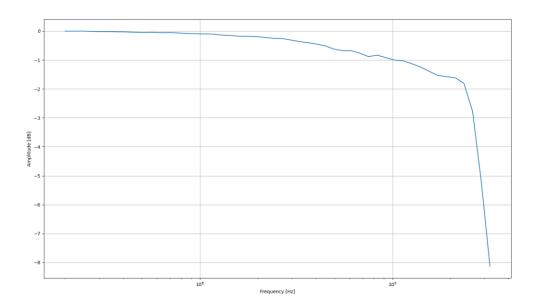


Figure 4 Typical frequency response

8.2 Crosstalk

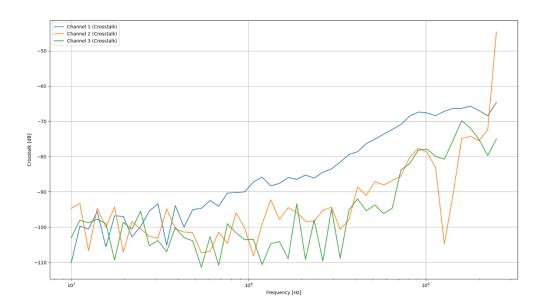


Figure 5 Typical crosstalk in 4-channel mode. Channel A to B, C and D.

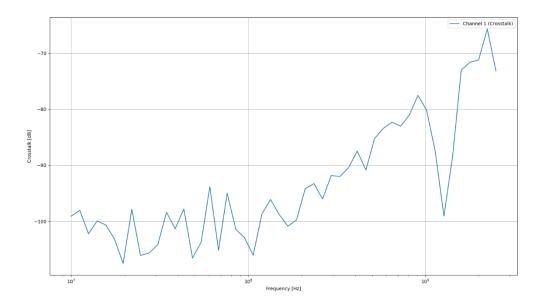


Figure 6 Typical crosstalk in 2-channel mode.

8.3 Frequency domain 4-channel mode

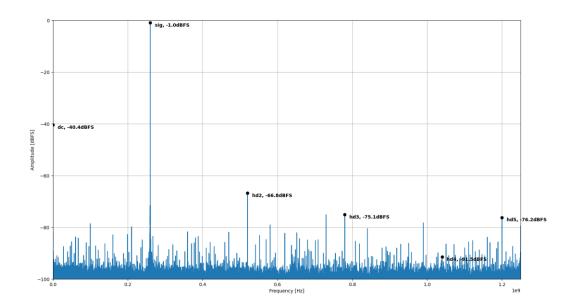


Figure 7 FFT typical single tone performance, 4-channel mode at 2.5 GSPS

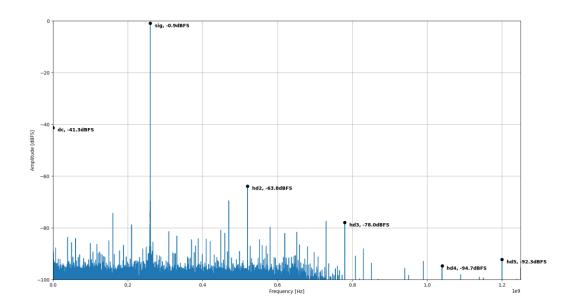


Figure 8 FFT using built in programmable FIR, 4-channel mode at 2.5 GSPS

8.4 Frequency domain 2-channel mode

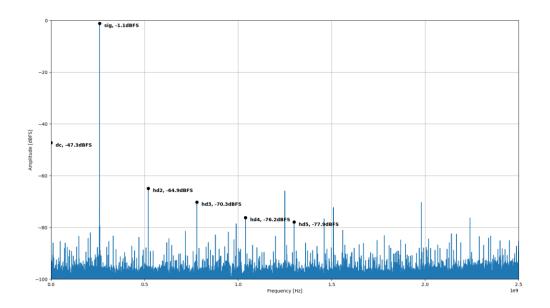


Figure 9 FFT typical single tone performance, 2-channel mode at 5 GSPS

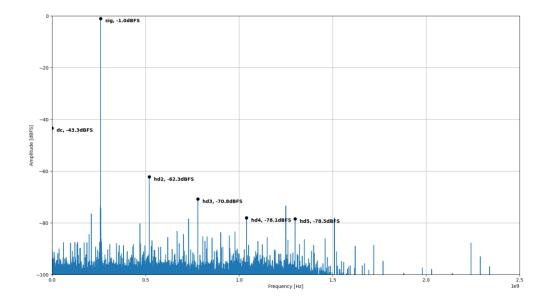


Figure 10 FFT using built in programmable FIR, 2-channel mode at 5 GSPS

9 BLOCK DIAGRAM

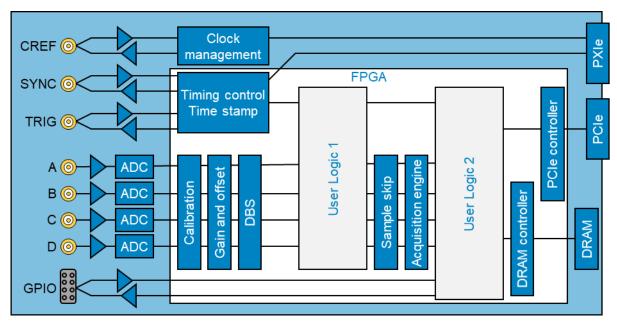


Figure 11 Block diagram of ADQ36-PXIe

Figure 12 ADQ36-PXIe

Important Information

Teledyne Signal Processing Devices Sweden AB (Teledyne SP Devices) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Teledyne SP Devices' general terms and conditions supplied at the time of order acknowledgment.

Teledyne SP Devices warrants that each product will be free of defects in materials and workmanship, and conform to specifications set forth in published data sheets, for a period of three (3) years. The warranty commences on the date the product is shipped by Teledyne SP Devices. Teledyne SP Devices' sole liability and responsibility under this warranty is to repair or replace any product which is returned to it by Buyer and which Teledyne SP Devices determines does not conform to the warranty. Product returned to Teledyne SP Devices for warranty service will be shipped to Teledyne SP Devices at Buyer's expense and will be returned to Buyer at Teledyne SP Devices' expense. Teledyne SP Devices will have no obligation under this warranty for any products which (i) has been improperly installed; (ii) has been used other than as recommended in Teledyne SP Devices' installation or operation instructions or specifications; or (iii) has been repaired, altered or modified by entities other than Teledyne SP Devices. The warranty of replacement products shall terminate with the warranty of the product. Buyer shall not return any products for any reason without the prior written authorization of Teledyne SP Devices.

In no event shall Teledyne SP Devices be liable for any damages arising out of or related to this document or the information contained in it.

TELEDYNE SP DEVICES' EXPRESS WARRANTY TO BUYER CONSTITUTES TELEDYNE SP DEVICES' SOLE LIABILITY AND THE BUYER'S SOLE REMEDY WITH RESPECT TO THE PRODUCTS AND IS IN LIEU OF ALL OTHER WARRANTIES, LIABILITIES AND REMEDIES. EXCEPT AS THUS PROVIDED, TELEDYNE SP DEVICES DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT.

TELEDYNE SP DEVICES DOES NOT INDEMNIFY, NOR HOLD THE BUYER HARMLESS, AGAINST ANY LIABILITIES, LOSSES, DAMAGES AND EXPENSES (INCLUDING ATTORNEY'S FEES) RELATING TO ANY CLAIMS WHATSOEVER. IN NO EVENT SHALL TELEDYNE SP DEVICES BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFIT, LOST DATA AND THE LIKE, DUE TO ANY CAUSE WHATSOEVER. NO SUIT OR ACTION SHALL BE BROUGHT AGAINST TELEDYNE SP DEVICES MORE THAN ONE YEAR AFTER THE RELATED CAUSE OF ACTION HAS ACCRUED. IN NO EVENT SHALL THE ACCRUED TOTAL LIABILITY OF TELEDYNE SP DEVICES FROM ANY LAWSUIT, CLAIM, WARRANTY OR INDEMNITY EXCEED THE AGGREGATE SUM PAID TO SP BY BUYER UNDER THE ORDER THAT GIVES RISE TO SUCH LAWSUIT, CLAIM, WARRANTY OR INDEMNITY.

Worldwide Sales and Technical Support

www.spdevices.com

Teledyne SP Devices Corporate Headquarters

Teknikringen 6 SE-583 30 Linköping Sweden

Phone: +46 (0)13 465 0600 Fax: +46 (0)13 991 3044 Email: info@spdevices.com

Copyright © 2022 Teledyne Signal Processing Devices Sweden AB. All rights reserved, including those to reproduce this publication or parts thereof in any form without permission in writing from Teledyne SP Devices.